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NATURAL CONVECTION INA LONG RECTANGULAR CAVITY 

K. P. Morgunov, T. Yu. Morgunova, and V. A. Misyura UDC 535,25 

We discuss an approximate analytical method of calculating the parameters of 
the motion of a gas in a long cavity induced by the presence of a heated verti- 
cal wall. Assuming the flow is plane-parallel and the longitudinal temperature 
gradient in the central region of the flow is constant, we obtain analytical 
expressions for the velocity and temperature profiles. We use the law of con- 
servation of energy in integral form to match the solution in the central re- 
gion with the end regions near the walls, and thereby obtain the flow param- 
eters without considering the structure of the flow in the end regions. 

Introduction. The structure of the flow in a closed cavity containing a gas is deter- 
mined by the temperature boundary conditions on the cavity walls. Previous studies of natu- 
ral convection in cavities have been concerned mainly with small to moderate values of the 
ratio of the horizontal dimension L of the cavity to its vertical dimension H and compara- 
tively little attention has been paid to flow in long horizontal cavities in the presence 
of a temperature gradient along the axis of the cavity. In [1-3] a two-dimensional rectangu- 
lar closed cavity was considered whose length L was much larger than its height H, while the 
vertical walls were maintained at different constant temperatures. It was assumed that at 
a certain distance from the heated wall the parameters describing the flow vary much more 
rapidly in the transverse direction than along the cavity axis. With this assumption a rela- 
tively simple solution of the Navier-Stokes equations in the Boussinesq approximation zan be 
obtained. We will assume that a solution of this type is correct for gas flow in a region 
sufficiently far from the vertical walls; this region is called the central flow region~ 
The basic problem is to explain the effect of the conditions on the vertical walls of the 
cavity on the form of the solution in the central region~ 

We discuss below an approach to the matching of the flow in the central region to the 
flow near the vertical walls. The method is based on the integral conservation laws of con- 
tinuum mechanics. 

We consider a two-dimensional rectangular closed cavity containing a gas. The length 
L of the cavity is much larger than the height H (Fig. i). The horizontal walls of the cavi- 
ty are assumed to be adiabatic. One of the vertical walls is isothermal with temperature 
T O . Two types of conditions are considered for the other vertical wall: the wall is iso- 
thermal with temperature TH, greater than To; the specific heat flux q through the wallt is 
specified. 

The equations describing the steady laminar flow of a viscous incompressible liqu:.d or 
gas in a horizontal cavity are, in dimensionless variables: 

Ou + Ov =0;  (1) 
Ox Oy 

1 ( Ou c)~g) Op 02u a2u 
u +v + --4--- (2) 

Pr 7 x  ax  " ax  2 @~ ' 
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Schematic diagram of the structure of the gas flow 
in a long cavity. 
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OT OT OZT O~T 
u - - - ~ - v  - - - - - -  n t (4). 

Ox Og Ox ~ Og 2 

Here we have used the usual Boussinesq approximation for the density. 
variables are constructed as follows: 

x* y* U* V* p* H a 
,,; y - -  ; u =  H ;  v =  H ;  p =  

H H a a poav 

The dimensionless 

X---- 

An asterisk denotes a dimensional variable. The scale factor for the temperature depends on 
the boundary condition On the heated wall: In the case of an isothermal wall the dimension- 
less temperature is T = (T* - T0)/(T H - To). In this case the Rayleigh number Ra in (3), 
which characterizes the intensity of natural convection, has the form Ra = ~gH3(TH - T0)/av. 
If the heat flux is specified on the vertical wall, then the dimensionless temperature will 
be: T = X(T* - T0)/H q and in (3) it will be necessary to use the modified Rayleigh number 
Ra* = ~gH4q/avX. 

The boundary conditions will have the form 

u = v = O ;  OT --0 at ~ y=O; 1; 
Og 

u = v = 0 ;  T = 0  a t  x = L / H .  

(5) 

At x = Owe have T = i for a constant wall temperature and 3T/Sx = i for a constant 
heat flux on the wall. 

We split up the flow region into three parts: the central region and the end regions 
near the two vertical walls (Fig. i). 

Numerical calculations confirm the conclusion of [I, 3] that in the central flow region 
the streamlines are parallel to the horizontal walls and the temperature gradient along the 
x axis is constant. Hence, in the central region 

OT 
v = 0; = K~ = cons t .  ( 6 )  

Ox 

We use condition (6) in solving the system (1)-(4) in the central flow region. First 
we eliminate the pressure from these equations by differentiating (2) with respect to y, 
differentiating (3) with respect to x, and subtracting the two resulting equations. Then 
with the help of (6), the system of equations (1)-(4) can be written in the form 

03U 
R a K 1  

OZT 
ug l  = 

= 0; (7) 

(8) 
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To solve (7) one more condition must be imposed on u [in addition to (5)]. For ~his 
condition we use the integral conservation of mass condition in a cross section of the cavity 

! 

J" u@ = o. (9 )  
0 

The solution of (7) subject to the conditions (5) and (9) will be 

u = Ra Kl  6 4 -I- �9 (io) 

With the help of (5) and (i0), we obtain from (8) an expression for the temperature in the 
central region: 

T = RaK~ 120 48 - ~ -  ( 1 i )  

The parameters K I and K 2 in (i0) and (ii) are determined by requiring that the tempera- 
ture and velocity distributions in the central region be consistent with the correspording 
distributions in the end regions. 

The following procedure was used in [3] to match the solution in the central region to 
the velocity and temperature distributions in the end regions and to thereby determine the 
constants K i and K 2. The differential equations of motion and energy (2)-(4) were integrated 
with respect to x and y over the extent of the end region [the pressure was first eliminated 
from (2) and (3)]. Then acceptable velocity and temperature distributions in the end regions 
were chosen in a rather arbitrary way. The necessary conditions are: these distributions 
must be consistent with the solutions for the central region on the matching boundaries; the 
boundary conditions on the solid walls must be satisfied, and the equation of continuity at 
any point inside the region must be satisfied. By substituting the chosen distributions in 
the end regions into the integral conditions, two expressions are obtained for the two un- 
known constants. 

We use the general integral form of the energy equation to construct the conditiens in 
the end regions. In this method one avoids the basic difficulty in the consistency procedure 
described above: the choice of velocity and temperature distributions for the end regions. 

We introduce the dimensionless length of an end region 6 (Fig. I). We define 6 as the 
part of the cavity near a vertical wall inside which the solution for the central region (I0) 
and (ii) becomes incorrect. 

The general integral form of the energy equation (first law of thermodynamics) is [4]: 

= - -  (i2) = \ 2 dt 

Here E is the surface enclosing the arbitrary volume V and vectors are denoted by bold-face 
letters. 

Note that if everything were perfectly consistent, the integral form of the energ7 equa- 
tion could be deduced from (1)-(4) and the Boussinesq approximation. However, the err.0r in 
using the energy equation in the form (12) will be of the same order as the error introduced 
into the Navier-Stokes equations by the Boussinesq approximation. Because of the approximate 
nature of our analysis, we neglect this error. We choose the contour OBCD (Fig. i) as the 
contour E for the end region next to the heated wall. Note that the velocity W vanishes on 
all segments of the contour except CD. On CD the velocity and temperature correspond ~o the 
values for the central region and are determined from (i0) and (Ii). The pressure distribu- 
tion in the central region (and hence on the line CD) can be determined from (2) and (13). 
Substituting (i0) for the velocity and (Ii) for the temperature into (2) and (3), we have 

( , ) 
720 24~ -]- 288 ) ~ -i- Ra K~g. 

767 



The internal energy of the gas U in (12) is defined as U = cT. The term dqmass/dt 
represents the flow of energy per unit time in the volume due to mass sources. In our case 
it is equal to zero. 

We take the force of gravity as the body force F. Then 

[pFWd~=MgW*, (13) 
V 

where M is the mass of the gas inside the volume V and W* is the velocity of the center of 
mass of the volume V, 

The quantity W* in the end regions is quite small and the integral (13) can be made 
negligibly small by choice of the length of the end region 6. The choice of 6 will be dis- 
cussed below. 

The external flow of energy into the volume is q* = %(T H - T6")/6" in the case when 
the temperature of the wall is specified (T6* is the temperature of the gas in the cross 
section x* = 6*) or q* = q in the case when the heat flux is specified at the wall. 

Combining these remarks with the help of (12), we obtain 

(RaK~ 362880 1 KIS--K2 (14) Ra2K'--504RaEm\I--4-40+KIK~+K~5~ 6 1440 

for an isothermal wall, and 

(l~a * K~ 
Ra *~ K~ --  504 Ra* Em 1440 q- KIK2 q- K~8 ) -~ 362 880 (15) 

in the case where the heat flux is specified at the wall. The relations (14) and (15) in- 
volve the dimensionless parameter Em = SgH/c. 

We obtain a second condition for the constants K I and K 2 by constructing an expression 
analogous to (12) for the other end region. For the vertical wall with constant temperature 
Tx=L/H we will have 

/RaK~ L ) 362880 /RaK~ L _K15+K~) 
Ra~K~--504RaEm\ 1440 q-K1Kz + K~-ff -K~5 -- 8 \~q-KI--~- " (16) 

Hence the two unknown constants K I and K 2 are found from the system of equations (14) and 
(16) or (15) and (16) as functions of Ra, Em, L/H, and the length of the end zone 6. 

We estimate the quantity 6. In [3] additional conditions were imposed on the flow in 
order to determine the length of the end zone. An example is the value of the temperature 
at the center of the cavity (the point with coordinates L/2H; 1/2). However, recalling the 
definition of 6 as the dimension of the region in which the solution in the central part of 
the cavity becomes incorrect, we note that the accuracy of the approximation of the solution 
obtained above to the true solution will be greater, the larger the value of 6 (0 < 6 < L/ 
2H). On the other hand, the condition that the integral of the body forces (13) be small 
imposes a restriction on 6. In contrast to [3], in our case 6 is a free parameter of the 

problem, and is not determined as part of the solution. 

We note that the solution obtained here is correct only in the case when the flow in 
the cavity is a counterflow, as described by (i0). In connection with this it is interest- 
ing to analyze qualitatively the changes in the nature of the flow with changes in the param- 
eters determining the flow, i.e., the numbers Ra and Pr and the ratio of the sides ,of the 
cavity L/H. 

For small Rayleigh numbers the motion in a long closed cavity is a counterflow, as con- 
sidered in the present paper, and its intensity is small in view of the smallness of the 
Rayleigh number. With increasing Rayleigh number boundary layers form on the vertical walls. 
With a further increase of the Rayleigh number more and more momentum arrives in the central 
region from the end regions and in turn from the rapidly moving boundary layers on the verti- 
cal walls. Heat obtained by the gas from the heated vertical wall feeds into the upper branch 
of the counterflow in the central region. This heat is then transferred by thermal conduction 
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Fig. 2. Horizontal component of the velocity and temperature 
in the central region for Ra = 104: i) from (i0) and (ii); 
2) numerical calculation. 

from the hot branch to the cold lower branch of the counterflow. This situation persists 
until the necessary amount of heat is transferred by thermal conduction from the upper ~ranch 
of the counterflow to the lower branch. A dimensional analysis carried out by Gill [5] 
showed that the heat feeding into the central region due to natural convection is a quantity 
of order kAT Ra I/4, whereas the heat drawn off by thermal conduction is of order kAT L/H. 
Hence, the counterflow can exist in the central region as long as we have the relation Ra < 
(L /H)  4 

We note that this analysis is correct for the case when the flow is determined by the 
viscous forces, i.e., the Prandtl number should not be too small (Pr ~ i). 

It was confirmed in [I] that with increasing L/H the Rayleigh number, which deternines 
the upper boundary of existence of this flow regime, also increases. 

The nature of the flow changes for still larger Rayleigh numbers. Boundary layers are 
formed on the horizontal thermally insulated walls. Flow practically ceases in the rest of 
the central region and a stagnent zone is formed in which the temperature varies linearly 
with height and is constant along the length of the cavity. This is the so-called boundary- 
layer regime [6], in which the nature of the flow differs qualitatively from that considered 
here; in particular, the velocity distribution in the form (i0) no longer corresponds to the 
actual flow structure in this case. 

The Prandtl number determines the effect of the viscous forces on the flow. For small 
Prandtl numbers (Pr << i) the thickness of the viscous boundary layers on the vertical ~alls 
of the cavity is much less than the thickness of the thermal boundary layer. This affects 
the flow in the entire cavity. It was established in [7] that when Pr < 0.2 a hydrodynamic 
instability arises in a cavity with thermally insulated horizontal walls and the counterflow 
structure of the flow breaks down and multi-cellular flow arises in the cavity. 

We solved the complete system of differential equations (1)-(4) numerically in order 
to assess the adequacy of our analytical method. Difference equations were constructed and 
solved with the help of a modification of the Patankar-Spolding method [8]. We used the 
natural variables (velocity, temperature, and pressure), which facilitates the approximation 
of the boundary conditions and the interpretation of the results. Calculations were done 
for relative cavity lengths L/H = i-i0, Rayleigh numbers Ra = 10-106 , and Prandtl numbers 
Pr = 0.5-5. The results of the numerical calculations are shown in Figs. 2 and 3. The re- 
sults confirm the qualitative picture of the flow and closely correspond with the results 
of [1--3]. The order of magnitude of the quantity 6 can be determined from the numerical 
results. We see from Fig. 3 that the calculations give ~ ~ 0.5-0.7. Hence, the length of 
the end zones can be estimated to a sufficient degree of accuracy by putting 6 = i. 

The deviations between the numerical results and the approximate analytical dependences 
are 8-10% for Rayleigh numbers in the interval i02-I0 ~. This can be interpreted as the er- 
ror in the approximate method. The deviations increase markedly with further increase in 
the Rayleigh number, since there is a qualitative change in the structure of the flow. 

The parameter Em appears in the relations (14)-(16) for the constants K l and K 2. The 
quantity Em is an analog of the Eckert number for free convection and characterizes the 
ratio of the kinetic energy of the flow to the heat transferred to the flow from the heated 
wall. 
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Fig. 3. Temperature distribution along the axis of a long 
cavity for Ra = 104: i) from (ii); 2) numerical calculation. 

Conclusion. The approximate analytical method discussed here of calculating the flow 
of gas in a long horizontal cavity is correct for the parameter space in which a counterflow 
with a cubic velocity profile (i0) holds in the central part of the cavity. Comparison of 
the structure of the flow obtained here with the results of [1-3] and with the results of 
the numerical calculations confirms the adequacy of our method. 

It is interesting also to note the absence of the effect of the Prandtl number on the 
flow parameters in our analytical solution. This is a consequence of the assumption (6), 
i.e., the flow in the central region is fully developed (does not depend on x) and in this 
case the inertial terms in (1)-(4) vanish. The numerical solution confirmed that the solu- 
tion is relatively independent of Prandtl number in the intervals of Prandtl number and Ray- 
leigh number considered here. 

We note that in the case of fully developed, steady-state flow considered here, the 
nature of the flow is determined by the conditions on the surfaces bounding the ends of the 
region, assuming that s volume integral (13) is small. Hence, it is not necessary to de- 
termine the qualitative or quantitative structure of the flow inside these regions. The 
flow in channels and cavities with complicated end regions can be studied with this approach 
if the flow conditions are known on the boundaries of these regions. Since 6 is a free pa- 
rameter of the problem, we can give it different values for the regions near the hot and 
cold walls, which widens the region of applicability of the method. 

The results obtained here can be applied to different fields of engineering mechanics, 
in the calculation of heat-transfer devices, solar energy systems, and so on. 

NOTATION 

a, thermal diffusivity; c, heat capacity of the gas; Em, dimensionless parameter; F, 
body force; g, acceleration of gravity; H, height of the cavity; KI and K2, dimensionless 
constants determining the velocity and temperature profiles; L, cavity length; M, mass; p, 
pressure; Pr, Prandtl number; q, heat flux; Ra, Rayleigh number; T, gas temperature; To, 
temperature of the cold wall; TH, temperature of the heated wall; u, horizontal component 
of the gas velocity; U, internal energy of the gas; v, vertical component of the gas veloc- 
ity; V, arbitrary volume of the gas; W, gas velocity; x, y, horizontal and vertical coordi- 
nates; ~, volume coefficient of thermal expansion of the gas; 6, length of the end regions; 
k, thermal conductivity; Z, surface enclosing the arbitrary volume V; p, gas density; ~, 
kinematic viscosity of the gas. 
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